Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Front Immunol ; 14: 1135815, 2023.
Article in English | MEDLINE | ID: covidwho-2253879

ABSTRACT

Licensed COVID-19 vaccines ameliorate viral infection by inducing production of neutralizing antibodies that bind the SARS-CoV-2 Spike protein and inhibit viral cellular entry. However, the clinical effectiveness of these vaccines is transitory as viral variants escape antibody neutralization. Effective vaccines that solely rely upon a T cell response to combat SARS-CoV-2 infection could be transformational because they can utilize highly conserved short pan-variant peptide epitopes, but a mRNA-LNP T cell vaccine has not been shown to provide effective anti-SARS-CoV-2 prophylaxis. Here we show a mRNA-LNP vaccine (MIT-T-COVID) based on highly conserved short peptide epitopes activates CD8+ and CD4+ T cell responses that attenuate morbidity and prevent mortality in HLA-A*02:01 transgenic mice infected with SARS-CoV-2 Beta (B.1.351). We found CD8+ T cells in mice immunized with MIT-T-COVID vaccine significantly increased from 1.1% to 24.0% of total pulmonary nucleated cells prior to and at 7 days post infection (dpi), respectively, indicating dynamic recruitment of circulating specific T cells into the infected lungs. Mice immunized with MIT-T-COVID had 2.8 (2 dpi) and 3.3 (7 dpi) times more lung infiltrating CD8+ T cells than unimmunized mice. Mice immunized with MIT-T-COVID had 17.4 times more lung infiltrating CD4+ T cells than unimmunized mice (7 dpi). The undetectable specific antibody response in MIT-T-COVID-immunized mice demonstrates specific T cell responses alone can effectively attenuate the pathogenesis of SARS-CoV-2 infection. Our results suggest further study is merited for pan-variant T cell vaccines, including for individuals that cannot produce neutralizing antibodies or to help mitigate Long COVID.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Humans , Mice, Transgenic , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , COVID-19/prevention & control , Post-Acute COVID-19 Syndrome , Antibodies, Neutralizing , Epitopes , RNA, Messenger
2.
COVID ; 2(11): 1551-1563, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2090030

ABSTRACT

Coronavirus disease 2019 (COVID-19) has had devastating effects worldwide, with particularly high morbidity and mortality in outbreaks on residential care facilities. Amantadine, originally licensed as an antiviral agent for therapy and prophylaxis against influenza A virus, has beneficial effects on patients with Parkinson's disease and is used for treatment of Parkinson's disease, multiple sclerosis, acquired brain injury, and various other neurological disorders. Recent observational data suggest an inverse relationship between the use of amantadine and COVID-19. Adamantanes, including amantadine and rimantadine, are reported to have in vitro activity against severe acute respiratory syndrome coronavirus (SARS-CoV) and, more recently, SARS-CoV-2. We hypothesized that adamantanes have antiviral activity against SARS-CoV-2, including variant strains. To assess the activity of adamantanes against SARS-CoV-2, we used in vitro and in vivo models of infection. We established that amantadine, rimantadine, and tromantadine inhibit the growth of SARS-CoV-2 in vitro in cultured human epithelial cells. While neither rimantadine nor amantadine reduces lung viral titers in mice infected with mouse-adapted SARS-CoV-2, rimantadine significantly reduces viral titers in the lungs in golden Syrian hamsters infected with SARS-CoV-2. In summary, rimantadine has antiviral activity against SARS-CoV-2 in human alveolar epithelial cells and in the hamster model of SARS-CoV-2 lung infection. The evaluation of amantadine or rimantadine in human randomized controlled trials can definitively address applications for the treatment or prevention of COVID-19.

3.
Nat Commun ; 13(1): 5814, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2050372

ABSTRACT

Monoclonal antibodies are a promising approach to treat COVID-19, however the emergence of SARS-CoV-2 variants has challenged the efficacy and future of these therapies. Antibody cocktails are being employed to mitigate these challenges, but neutralization escape remains a major challenge and alternative strategies are needed. Here we present two anti-SARS-CoV-2 spike binding antibodies, one Class 1 and one Class 4, selected from our non-immune human single-chain variable fragment (scFv) phage library, that are engineered into four, fully-human IgG-like bispecific antibodies (BsAb). Prophylaxis of hACE2 mice and post-infection treatment of golden hamsters demonstrates the efficacy of the monospecific antibodies against the original Wuhan strain, while promising in vitro results with the BsAbs demonstrate enhanced binding and distinct synergistic effects on neutralizing activity against circulating variants of concern. In particular, one BsAb engineered in a tandem scFv-Fc configuration shows synergistic neutralization activity against several variants of concern including B.1.617.2. This work provides evidence that synergistic neutralization can be achieved using a BsAb scaffold, and serves as a foundation for the future development of broadly reactive BsAbs against emerging variants of concern.


Subject(s)
Antibodies, Bispecific , COVID-19 , Single-Chain Antibodies , Animals , Antibodies, Bispecific/genetics , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use , Cricetinae , Humans , Immunoglobulin G/genetics , Mice , Neutralization Tests , SARS-CoV-2/genetics , Single-Chain Antibodies/genetics , Spike Glycoprotein, Coronavirus/genetics
5.
Sci Immunol ; 7(75): eabl9943, 2022 09 09.
Article in English | MEDLINE | ID: covidwho-1909566

ABSTRACT

Monoclonal antibodies are an efficacious therapy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, rapid viral mutagenesis led to escape from most of these therapies, outlining the need for an antibody cocktail with a broad neutralizing potency. Using an unbiased interrogation of the memory B cell repertoire of patients with convalescent COVID-19, we identified human antibodies with broad antiviral activity in vitro and efficacy in vivo against all tested SARS-CoV-2 variants of concern, including Delta and Omicron BA.1 and BA.2. Here, we describe an antibody cocktail, IMM-BCP-01, that consists of three patient-derived broadly neutralizing antibodies directed at nonoverlapping surfaces on the SARS-CoV-2 Spike protein. Two antibodies, IMM20184 and IMM20190, directly blocked Spike binding to the ACE2 receptor. Binding of the third antibody, IMM20253, to its cryptic epitope on the outer surface of RBD altered the conformation of the Spike Trimer, promoting the release of Spike monomers. These antibodies decreased Omicron SARS-CoV-2 infection in the lungs of Syrian golden hamsters in vivo and potently induced antiviral effector response in vitro, including phagocytosis, ADCC, and complement pathway activation. Our preclinical data demonstrated that the three-antibody cocktail IMM-BCP-01 could be a promising means for preventing or treating infection of SARS-CoV-2 variants of concern, including Omicron BA.1 and BA.2, in susceptible individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , Cricetinae , Humans , Spike Glycoprotein, Coronavirus/genetics
6.
Advanced Science ; 8(11), 2021.
Article in English | ProQuest Central | ID: covidwho-1870661

ABSTRACT

While the ongoing COVID‐19 pandemic affirms an urgent global need for effective vaccines as second and third infection waves are spreading worldwide and generating new mutant virus strains, it has also revealed the importance of mitigating the transmission of SARS‐CoV‐2 through the introduction of restrictive social practices. Here, it is demonstrated that an architecturally‐ and chemically‐diverse family of nanostructured anionic polymers yield a rapid and continuous disinfecting alternative to inactivate coronaviruses and prevent their transmission from contact with contaminated surfaces. Operating on a dramatic pH‐drop mechanism along the polymer/pathogen interface, polymers of this archetype inactivate the SARS‐CoV‐2 virus, as well as a human coronavirus surrogate (HCoV‐229E), to the minimum detection limit within minutes. Application of these anionic polymers to frequently touched surfaces in medical, educational, and public‐transportation facilities, or personal protection equipment, can provide rapid and repetitive protection without detrimental health or environmental complications.

7.
Nat Commun ; 13(1): 1128, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1721520

ABSTRACT

SARS-CoV-2 is a betacoronavirus with a single-stranded, positive-sense, 30-kilobase RNA genome responsible for the ongoing COVID-19 pandemic. Although population average structure models of the genome were recently reported, there is little experimental data on native structural ensembles, and most structures lack functional characterization. Here we report secondary structure heterogeneity of the entire SARS-CoV-2 genome in two lines of infected cells at single nucleotide resolution. Our results reveal alternative RNA conformations across the genome and at the critical frameshifting stimulation element (FSE) that are drastically different from prevailing population average models. Importantly, we find that this structural ensemble promotes frameshifting rates much higher than the canonical minimal FSE and similar to ribosome profiling studies. Our results highlight the value of studying RNA in its full length and cellular context. The genomic structures detailed here lay groundwork for coronavirus RNA biology and will guide the design of SARS-CoV-2 RNA-based therapeutics.


Subject(s)
COVID-19/virology , RNA, Viral/chemistry , SARS-CoV-2/genetics , Frameshifting, Ribosomal , Genome, Viral , Humans , Nucleic Acid Conformation , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism
8.
Clin Infect Dis ; 74(6): 1081-1084, 2022 03 23.
Article in English | MEDLINE | ID: covidwho-1707490

ABSTRACT

The clinical significance of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) RNA in stool remains uncertain. We found that extrapulmonary dissemination of infection to the gastrointestinal tract, assessed by the presence of SARS-CoV-2 RNA in stool, is associated with decreased coronavirus disease 2019 (COVID-19) survival. Measurement of SARS-CoV-2 RNA in stool may have utility for clinical risk assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Feces , Gastrointestinal Tract , Humans , RNA, Viral , SARS-CoV-2/genetics
9.
Science ; 375(6578): eabl6251, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1650842

ABSTRACT

Many studies have examined the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on neutralizing antibody activity after they have become dominant strains. Here, we evaluate the consequences of further viral evolution. We demonstrate mechanisms through which the SARS-CoV-2 receptor binding domain (RBD) can tolerate large numbers of simultaneous antibody escape mutations and show that pseudotypes containing up to seven mutations, as opposed to the one to three found in previously studied variants of concern, are more resistant to neutralization by therapeutic antibodies and serum from vaccine recipients. We identify an antibody that binds the RBD core to neutralize pseudotypes for all tested variants but show that the RBD can acquire an N-linked glycan to escape neutralization. Our findings portend continued emergence of escape variants as SARS-CoV-2 adapts to humans.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immune Evasion , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , BNT162 Vaccine/immunology , Betacoronavirus/immunology , COVID-19/immunology , COVID-19/virology , Cross Reactions , Cryoelectron Microscopy , Crystallography, X-Ray , Epitopes , Evolution, Molecular , Humans , Models, Molecular , Mutation , Polysaccharides/analysis , Protein Binding , Protein Domains , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Pseudotyping
10.
J Am Chem Soc ; 143(42): 17615-17621, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1467046

ABSTRACT

Cellular binding and entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are mediated by its spike glycoprotein (S protein), which binds with not only the human angiotensin-converting enzyme 2 (ACE2) receptor but also glycosaminoglycans such as heparin. Cell membrane-coated nanoparticles ("cellular nanosponges") mimic the host cells to attract and neutralize SARS-CoV-2 through natural cellular receptors, leading to a broad-spectrum antiviral strategy. Herein, we show that increasing surface heparin density on the cellular nanosponges can promote their inhibition against SARS-CoV-2. Specifically, cellular nanosponges are made with azido-expressing host cell membranes followed by conjugating heparin to the nanosponge surfaces. Cellular nanosponges with a higher heparin density have a larger binding capacity with viral S proteins and a significantly higher inhibition efficacy against SARS-CoV-2 infectivity. Overall, surface glycan engineering of host-mimicking cellular nanosponges is a facile method to enhance SARS-CoV-2 inhibition. This approach can be readily generalized to promote the inhibition of other glycan-dependent viruses.


Subject(s)
COVID-19 Drug Treatment , Heparin/administration & dosage , Nanostructures/therapeutic use , Polysaccharides/administration & dosage , SARS-CoV-2/metabolism , COVID-19/virology , Heparin/metabolism , Humans , Polysaccharides/metabolism
11.
Adv Healthc Mater ; 10(22): e2101370, 2021 11.
Article in English | MEDLINE | ID: covidwho-1449905

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic demonstrates the importance of generating safe and efficacious vaccines that can be rapidly deployed against emerging pathogens. Subunit vaccines are considered among the safest, but proteins used in these typically lack strong immunogenicity, leading to poor immune responses. Here, a biomaterial COVID-19 vaccine based on a mesoporous silica rods (MSRs) platform is described. MSRs loaded with granulocyte-macrophage colony-stimulating factor (GM-CSF), the toll-like receptor 4 (TLR-4) agonist monophosphoryl lipid A (MPLA), and SARS-CoV-2 viral protein antigens slowly release their cargo and form subcutaneous scaffolds that locally recruit and activate antigen-presenting cells (APCs) for the generation of adaptive immunity. MSR-based vaccines generate robust and durable cellular and humoral responses against SARS-CoV-2 antigens, including the poorly immunogenic receptor binding domain (RBD) of the spike (S) protein. Persistent antibodies over the course of 8 months are found in all vaccine configurations tested and robust in vitro viral neutralization is observed both in a prime-boost and a single-dose regimen. These vaccines can be fully formulated ahead of time or stored lyophilized and reconstituted with an antigen mixture moments before injection, which can facilitate its rapid deployment against emerging SARS-CoV-2 variants or new pathogens. Together, the data show a promising COVID-19 vaccine candidate and a generally adaptable vaccine platform against infectious pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Adaptive Immunity , Antibodies, Viral , Biocompatible Materials , COVID-19 Vaccines , Humans
12.
Advanced Science ; 8(18):2170111, 2021.
Article in English | Wiley | ID: covidwho-1437024

ABSTRACT

COVID-19 Vaccines In article number 2100316 by Sidi A. Bencherif and co-workers, it is demonstrated that advanced biomaterials can be leveraged to boost the effectiveness of SARS-CoV-2 protein subunit vaccines. Illustration depicting a subcutaneously injected oxygen-releasing cryogel-based COVID-19 vaccine boosting the immune response, leading to a sustained production of highly effective neutralizing antibodies against SARS-CoV-2.

13.
Cell Host Microbe ; 29(9): 1437-1453.e8, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1347535

ABSTRACT

The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and can be deployed easily. Here, AAVCOVID-1, an adeno-associated viral (AAV), spike-gene-based vaccine candidate demonstrates potent immunogenicity in mouse and non-human primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques. Peak neutralizing antibody titers are sustained at 1 year and complemented by functional memory T cell responses. The AAVCOVID vector has no relevant pre-existing immunity in humans and does not elicit cross-reactivity to common AAVs used in gene therapy. Vector genome persistence and expression wanes following injection. The single low-dose requirement, high-yield manufacturability, and 1-month stability for storage at room temperature may make this technology well suited to support effective immunization campaigns for emerging pathogens on a global scale.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Dependovirus/genetics , Dependovirus/metabolism , Female , Humans , Immunogenicity, Vaccine/immunology , Immunologic Memory/immunology , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology , Transgenes/genetics , Vaccination/methods , Viral Load/immunology
14.
Adv Sci (Weinh) ; 8(18): 2100316, 2021 09.
Article in English | MEDLINE | ID: covidwho-1233162

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global health crisis, resulting in a critical need for effective vaccines that generate protective antibodies. Protein subunit vaccines represent a promising approach but often lack the immunogenicity required for strong immune stimulation. To overcome this challenge, it is first demonstrated that advanced biomaterials can be leveraged to boost the effectiveness of SARS-CoV-2 protein subunit vaccines. Additionally, it is reported that oxygen is a powerful immunological co-adjuvant and has an ability to further potentiate vaccine potency. In preclinical studies, mice immunized with an oxygen-generating coronavirus disease 2019 (COVID-19) cryogel-based vaccine (O2-CryogelVAX) exhibit a robust Th1 and Th2 immune response, leading to a sustained production of highly effective neutralizing antibodies against the virus. Even with a single immunization, O2-CryogelVAX achieves high antibody titers within 21 days, and both binding and neutralizing antibody levels are further increased after a second dose. Engineering a potent vaccine system that generates sufficient neutralizing antibodies after one dose is a preferred strategy amid vaccine shortage. The data suggest that this platform is a promising technology to reinforce vaccine-driven immunostimulation and is applicable to current and emerging infectious diseases.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Cryogels/administration & dosage , Drug Delivery Systems/methods , Oxygen/administration & dosage , Oxygen/immunology , Animals , Biocompatible Materials , Female , Immunity/immunology , Mice , Models, Animal , SARS-CoV-2
15.
Cell ; 184(10): 2605-2617.e18, 2021 05 13.
Article in English | MEDLINE | ID: covidwho-1135275

ABSTRACT

Many individuals mount nearly identical antibody responses to SARS-CoV-2. To gain insight into how the viral spike (S) protein receptor-binding domain (RBD) might evolve in response to common antibody responses, we studied mutations occurring during virus evolution in a persistently infected immunocompromised individual. We use antibody Fab/RBD structures to predict, and pseudotypes to confirm, that mutations found in late-stage evolved S variants confer resistance to a common class of SARS-CoV-2 neutralizing antibodies we isolated from a healthy COVID-19 convalescent donor. Resistance extends to the polyclonal serum immunoglobulins of four out of four healthy convalescent donors we tested and to monoclonal antibodies in clinical use. We further show that affinity maturation is unimportant for wild-type virus neutralization but is critical to neutralization breadth. Because the mutations we studied foreshadowed emerging variants that are now circulating across the globe, our results have implications to the long-term efficacy of S-directed countermeasures.


Subject(s)
Antibodies, Viral/immunology , COVID-19 , Evolution, Molecular , Immune Evasion/immunology , Immunocompromised Host , Immunoglobulin Fab Fragments/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , COVID-19/genetics , COVID-19/immunology , Female , HEK293 Cells , Humans , Male , Protein Domains , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
16.
JCI Insight ; 6(1)2021 01 11.
Article in English | MEDLINE | ID: covidwho-1066996

ABSTRACT

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coupled with a lack of therapeutics, has paralyzed the globe. Although significant effort has been invested in identifying antibodies that block infection, the ability of antibodies to target infected cells through Fc interactions may be vital to eliminate the virus. To explore the role of Fc activity in SARS-CoV-2 immunity, the functional potential of a cross-SARS-reactive antibody, CR3022, was assessed. CR3022 was able to broadly drive antibody effector functions, providing critical immune clearance at entry and upon egress. Using selectively engineered Fc variants, no protection was observed after administration of WT IgG1 in mice or hamsters. Conversely, the functionally enhanced Fc variant resulted in increased pathology in both the mouse and hamster models, causing weight loss in mice and enhanced viral replication and weight loss in the more susceptible hamster model, highlighting the pathological functions of Fc-enhancing mutations. These data point to the critical need for strategic Fc engineering for the treatment of SARS-CoV-2 infection.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19/immunology , Immunity, Innate/drug effects , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/therapeutic use , COVID-19/physiopathology , Cricetinae , Cross Reactions , Epitopes , Humans , Immunity, Innate/immunology , Immunoglobulin G/genetics , Immunoglobulin G/therapeutic use , Mesocricetus , Mice , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/immunology , Protein Engineering , Receptors, Fc/immunology , Severe acute respiratory syndrome-related coronavirus/drug effects , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , THP-1 Cells , Viral Load/drug effects , Weight Loss/drug effects , COVID-19 Drug Treatment
17.
Nat Struct Mol Biol ; 28(2): 202-209, 2021 02.
Article in English | MEDLINE | ID: covidwho-1065920

ABSTRACT

Effective intervention strategies are urgently needed to control the COVID-19 pandemic. Human angiotensin-converting enzyme 2 (ACE2) is a membrane-bound carboxypeptidase that forms a dimer and serves as the cellular receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2 is also a key negative regulator of the renin-angiotensin system that modulates vascular functions. We report here the properties of a trimeric ACE2 ectodomain variant, engineered using a structure-based approach. The trimeric ACE2 variant has a binding affinity of ~60 pM for the spike protein of SARS­CoV­2 (compared with 77 nM for monomeric ACE2 and 12-22 nM for dimeric ACE2 constructs), and its peptidase activity and the ability to block activation of angiotensin II receptor type 1 in the renin-angiotensin system are preserved. Moreover, the engineered ACE2 potently inhibits SARS­CoV­2 infection in cell culture. These results suggest that engineered, trimeric ACE2 may be a promising anti-SARS-CoV-2 agent for treating COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/chemistry , COVID-19 Drug Treatment , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/therapeutic use , Antiviral Agents/therapeutic use , Cryoelectron Microscopy , Humans , Models, Molecular , Protein Engineering , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use , SARS-CoV-2/physiology
18.
Sci Rep ; 10(1): 22421, 2020 12 30.
Article in English | MEDLINE | ID: covidwho-1003313

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has devastated global public health systems and economies, with over 52 million people infected, millions of jobs and businesses lost, and more than 1 million deaths recorded to date. Contact with surfaces contaminated with droplets generated by infected persons through exhaling, talking, coughing and sneezing is a major driver of SARS-CoV-2 transmission, with the virus being able to survive on surfaces for extended periods of time. To interrupt these chains of transmission, there is an urgent need for devices that can be deployed to inactivate the virus on both recently and existing contaminated surfaces. Here, we describe the inactivation of SARS-CoV-2 in both wet and dry format using radiation generated by a commercially available Signify ultraviolet (UV)-C light source at 254 nm. We show that for contaminated surfaces, only seconds of exposure is required for complete inactivation, allowing for easy implementation in decontamination workflows.


Subject(s)
COVID-19/prevention & control , Decontamination/methods , SARS-CoV-2/radiation effects , Ultraviolet Rays , Virus Inactivation/radiation effects , COVID-19/transmission , Humans
19.
Nano Lett ; 20(7): 5570-5574, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-604507

ABSTRACT

We report cellular nanosponges as an effective medical countermeasure to the SARS-CoV-2 virus. Two types of cellular nanosponges are made of the plasma membranes derived from human lung epithelial type II cells or human macrophages. These nanosponges display the same protein receptors, both identified and unidentified, required by SARS-CoV-2 for cellular entry. It is shown that, following incubation with the nanosponges, SARS-CoV-2 is neutralized and unable to infect cells. Crucially, the nanosponge platform is agnostic to viral mutations and potentially viral species, as well. As long as the target of the virus remains the identified host cell, the nanosponges will be able to neutralize the virus.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Nanostructures , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Cell Membrane/virology , Coronavirus Infections/virology , Epithelial Cells/virology , Host Microbial Interactions , Humans , Lung/cytology , Lung/virology , Macrophages/virology , Nanostructures/ultrastructure , Nanotechnology , Pneumonia, Viral/virology , Receptors, Virus/physiology , SARS-CoV-2 , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL